Adaptive Evolution Is Substantially Impeded by Hill–Robertson Interference in Drosophila

نویسندگان

  • David Castellano
  • Marta Coronado-Zamora
  • Jose L. Campos
  • Antonio Barbadilla
  • Adam Eyre-Walker
چکیده

Hill-Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald-Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation.

Associations between selected alleles and the genetic backgrounds on which they are found can reduce the efficacy of selection. We consider the extent to which such interference, known as the Hill-Robertson effect, acting between weakly selected alleles, can restrict molecular adaptation and affect patterns of polymorphism and divergence. In particular, we focus on synonymous-site mutations, co...

متن کامل

The effects of sex-biased gene expression and X-linkage on rates of adaptive protein sequence evolution in Drosophila

A faster rate of adaptive evolution of X-linked genes compared with autosomal genes may be caused by the fixation of new recessive or partially recessive advantageous mutations (the Faster-X effect). This effect is expected to be largest for mutations that affect only male fitness and absent for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by...

متن کامل

Positive correlation between evolutionary rate and recombination rate in Drosophila genes with male-biased expression.

Previous studies have shown that genes that are expressed predominantly or exclusively in males tend to evolve rapidly in comparison to other genes. In most cases, however, it is unknown whether this rapid evolution is the result of increased positive (or sexual) selection on male-expressed traits or if it is due to a relaxation of selective constraints. To distinguish between these two possibi...

متن کامل

The Relation between Recombination Rate and Patterns of Molecular Evolution and Variation in Drosophila melanogaster

Genetic recombination associated with sexual reproduction increases the efficiency of natural selection by reducing the strength of Hill-Robertson interference. Such interference can be caused either by selective sweeps of positively selected alleles or by background selection (BGS) against deleterious mutations. Its consequences can be studied by comparing patterns of molecular evolution and v...

متن کامل

Intron size and exon evolution in Drosophila.

We have found a negative correlation between evolutionary rate at the protein level (as measured by d(N)) and intron size in Drosophila. Although such a relation is expected if introns reduce Hill-Robertson interference within genes, it seems more likely to be explained by the higher abundance of cis-regulatory elements in introns (especially first introns) in genes under strong selective const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2016